Variable Rate Starter Fertilization **Based on Soil Attributes**

Jeffrey Vetsch and Dr. Daniel Kaiser Univ. of Minnesota

Fluid Fertilizer Forum, Scottsdale, AZ February, 15 and 16, 2016

Funding provided by the Fluid Fertilizer Foundation

UNIVERSITY OF MINNESOTA Driven to DiscoversM

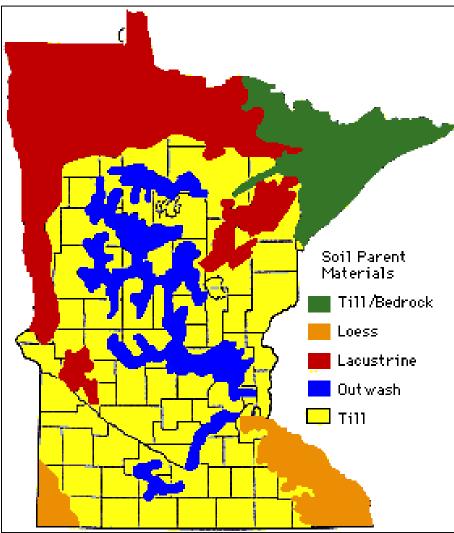
Justification

- A fluid starter fertilizer, like ammonium poly phosphate (APP), applied in-furrow may be an efficient and economic alternative to a traditional broadcast application. Especially:
 - on short-term rented land, where the farmer is not necessarily interested in building soil test levels,
 - when commodity prices are lower and input cost reductions are desired and

esota**Corn**

- on high pH soils that have the potential to fix P.

Funding provided by the Fluid Fertilizer Foundation



UNIVERSITY OF MINNESOTA Driven to Discover™

Soil parent materials of Minnesota

- Glacial till / bedrock
- Loess
- Outwash
- Glacial till
- Lacustrine

UNIVERSITY OF MINNESOTA Driven to Discoversm

MinnesotaCorn Fertilizer Foundati 46250 Very High 462,00 15 High 462,50 Olsen P (ppm) 12 Medium 4621 8 462050 Low 162⁰⁰⁰ Very Low 1160 1158 461'950 1156_ 1154_ ⁴⁸⁶⁵⁰⁰⁰. 467900 4864950 Should we vary starter 4864900 rates based on soil test or pH? Ρ

VR Starter New Richland 2013

Additional questions

 What is the benefit of starter fertilizer with and without broadcast P fertilizer?

UNIVERSITY OF MINNESOTA

Driven to Discover^{ss}

 How do starter and broadcast P applications affect yield response across the landscape?

nesota**Corn**

- The objectives of this study were to:
 - 1) measure the effect of APP rate on early growth of corn and grain yield;
 - 2) determine if the optimum rate of APP varies within a typical Minnesota field;
 - develop and calibrate an algorithm for making variable rate starter applications based on soil attributes; and
 - compare and contrast the effects of a traditional broadcast P application on the response(s) observed in objectives 1, 2 and 3.

esota**Corn**

Funding provided by the Fluid Fertilizer Foundation

UNIVERSITY OF MINNESOTA

Driven to Discoversm

Experimental design

- Modified strip trial design
- Treatments randomized within replications in a split-plot arrangement
 - Main plot: Broadcast P rate (2)
 - Sub plot: APP starter rates (4)
- 16 replications per location
 - 16 reps × 8 treatments = 128 plots
- Response data from replications with similar soil attributes are pooled together

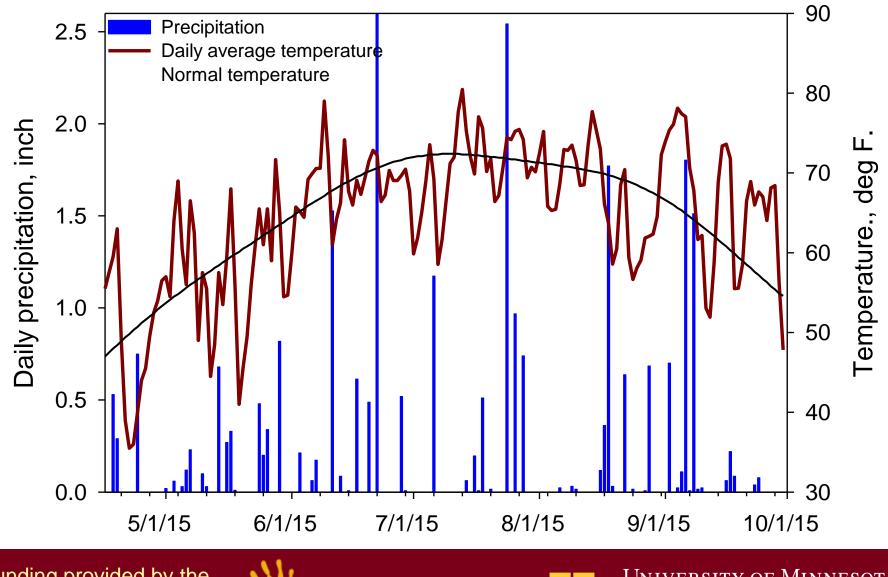
Funding provided by the Fluid Fertilizer Foundation

10' 10'

UNIVERSITY OF MINNESOTA Driven to Discoversm

Methods and measurements

- Ten field studies were conducted from 2012-2015 on fields with varying soil test P and pH.
- Broadcast P applied at 0 and 120 lb P₂O₅/ac (TSP).
- APP applied in-furrow at 0, 2.5, 5 and 7.5 gal/ac or about 0, 10, 20 and 30 lb P_2O_5 /ac.
- At V5-6 harvest 8 whole plants measure: yield, P concentration and P uptake.
- Grain harvest measure: yield, moisture, P concentration and P removal in corn grain.


Methods (continued)

- Soil samples analyzed for Bray P1, Olsen P, pH, CaCO₃ and exchangeable K
 - 0-6 inch samples: one composite (8 cores) sample from two neighboring plots or an area about 15 ft. by 35 ft.
 - 6-12 inch samples: one composite (16 cores) for each replication or an area 40 ft. by 130 ft (0.12 ac).

iven to Discoversm

UNIVERSITY OF MINNESOTA Funding provided by the nesota**Corn** Fluid Fertilizer Foundation

Precipitation and temperature at New Richland

-Corn

Funding provided by the Fluid Fertilizer Foundation

UNIVERSITY OF MINNESOTA Driven to Discover^{ss}

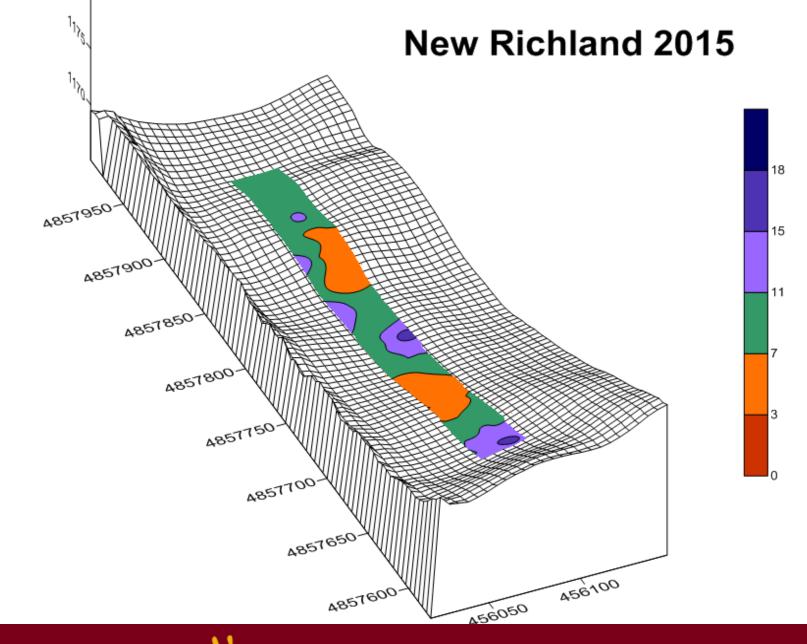
Weather summary: 2012–2015

- 2012: early spring (planting), very warm early, summer drought reduced yields
- 2013: cool and wet spring, snow delayed planting, late summer drought reduced yields
- 2014: awful growing season, record wet June, cool, summer drought, early frost
- 2015: early spring (planting) but cool, ample well distributed rainfall, EXCELLENT growing season

esota**Corn**

UNIVERSITY OF MINNESOTA

Driven to Discover™


Summary of soil test attributes (2015)

Soil		рН		Olsen P		
Location	Depth	SOM	Avg.	Range	Avg.	Range
	inch	%			p	pm
New Rich.	0-6	5.6	7.6	7.0-7.9	9	3-17
	6-12	4.7	7.0	6.7-8.0	3	3-9
Clarkfield	0-6	4.2	7.8	6.8-8.0	9	4-20
	6-12	4.0	7.9	7.6-8.1	3	2-5

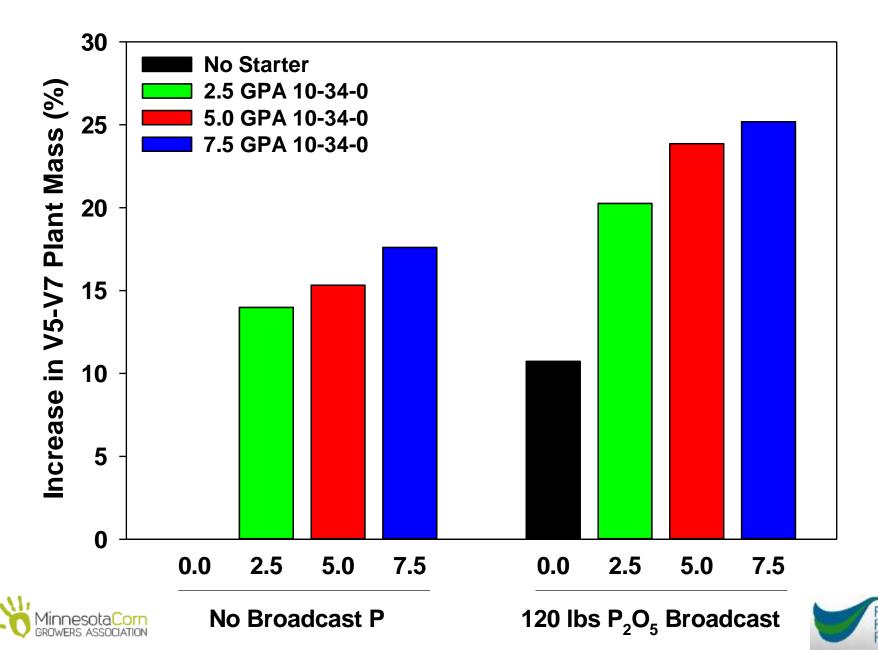
Minnesota**Corn**

Funding provided by the Fluid Fertilizer Foundation


UNIVERSITY OF MINNESOTA Driven to Discoversm

MinnesotaCorn

Funding provided by the Fluid Fertilizer Foundation


UNIVERSITY OF MINNESOTA Driven to Discoversm

MinnesotaCorn

Figure 1. Increase in early plant growth over the control (no starter or broadcast P) averaged across eight southern Minnesota field locations.

Indation

Summary: V5-6 whole plants

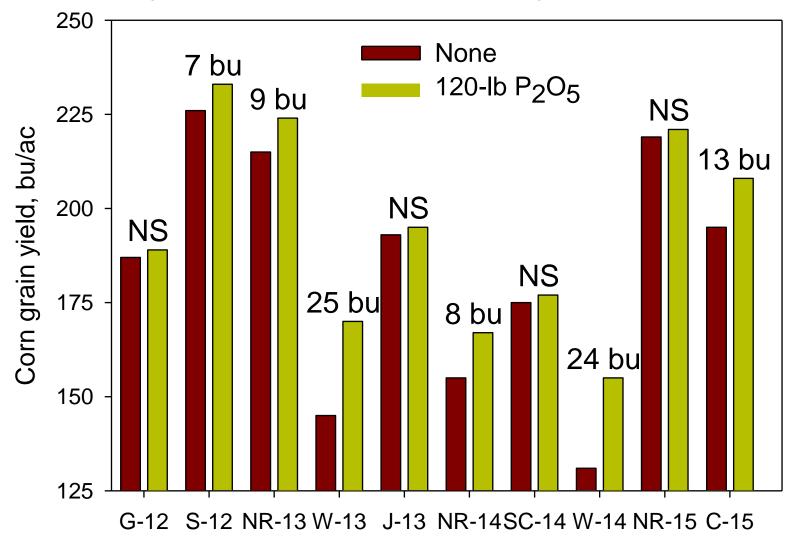
- When averaged across sites:
 - Starter as APP applied in-furrow increased
 V5 corn plant mass.
 - Broadcast P increased plant mass but not as much as starter
 - Plant mass increased slightly with increasing APP rate.

Funding provided by the Fluid Fertilizer Foundation

UNIVERSITY OF MINNES OTA

Driven to Discover™

Significance of treatment main effects for grain yield and moisture by location (2015).


Parameter	Location	Broadcast P	Starter P	Bdct*Starter		
		P > F				
Grain Yield	New Richland	0.644	0.253	0.954		
	Clarkfield	<0.001	0.498	0.156		
Grain Moisture	New Richland	0.614	0.927	0.691		
	Clarkfield	0.320	0.698	0.410		

/innesota**Corn**

UNIVERSITY OF MINNESOTA

Driven to Discover^{ss}

Corn yield as affected by broadcast P

/innesota**Corn**

Funding provided by the Fluid Fertilizer Foundation

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁴⁴

Main effects summary for grain yield

 Broadcast P increased grain yields at 1 of 2 sites in 2015 and 6 of 10 sites overall.

– Yield response ranged from 7 – 25 bu/ac.

 Starter fertilizer increased grain yields in 3 of 10 sites overall, none in 2015.

nesota**Corn**

UNIVERSITY OF MINNES OTA

Driven to Discover™

Relative yield as affected by treatment main effects across locations.

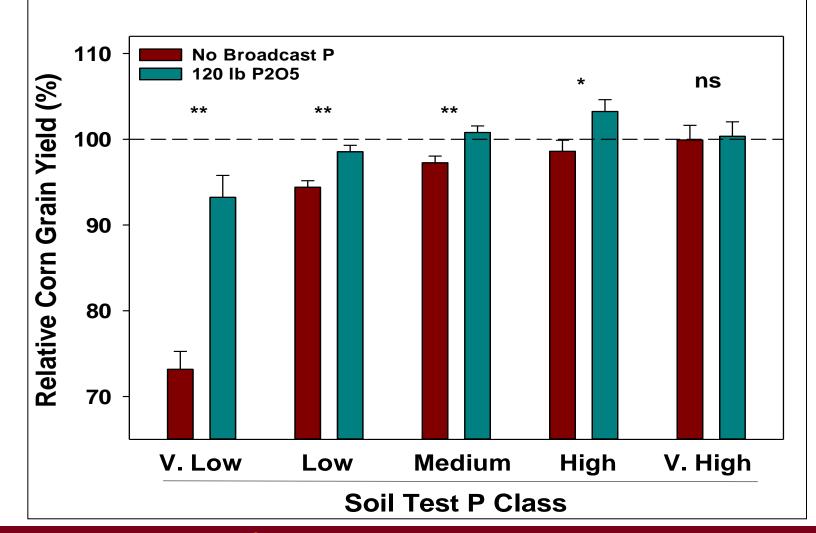
Treatment Effects	Relative yield
Olsen P Level or Class	%
Very Low (0-3 ppm Olsen)	83.2 c
Low (4-7 ppm Olsen)	96.6 b
Medium (8-11 ppm)	99.0 a
High (12-15 ppm)	100.9 a
Very High (16+ ppm)	100.1 a
Broadcast Rate	
$0 \text{ lb } P_2O_5/\text{ac}$	92.7 b
120 lb	99.3 a
Starter (APP, 10-34-0) Rate	
0 gal/ac	93.5 b
2.5 gal	94.8 b
5.0 gal	98.0 a
7.5 gal	97.6 a

Relative yield as affected by treatment main effects across locations. Treatment Effects Relative yield

Interactions, (P > F)

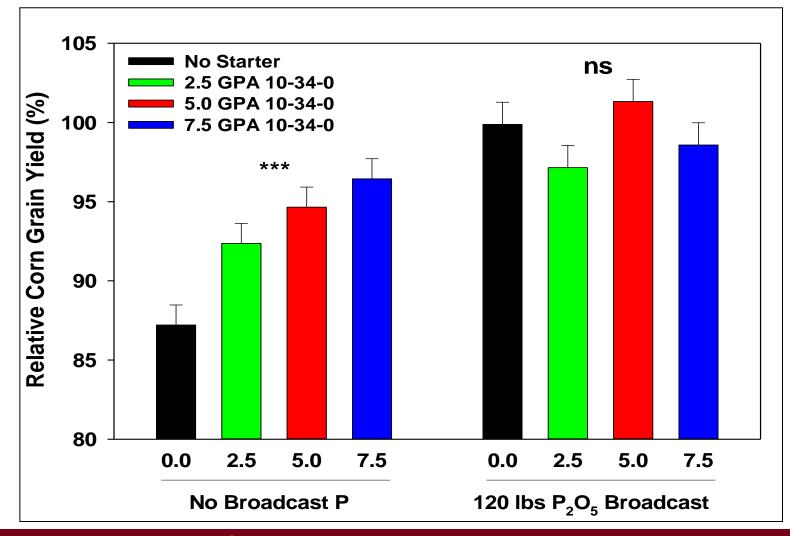
Olsen Level×Broadcast Rate	
Olsen Level×Starter Rate	
Broadcast Rate×Starter Rate	
Olsen Level×Broadcast×Starter	

< 0.001 0.103 0.001 0.124


UNIVERSITY OF MINNESOTA

Driven to Discoversm

Relative yield as affected by the interaction between Olsen P level and broadcast P.



Ainnesota**Corn**

Funding provided by the Fluid Fertilizer Foundation

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁵⁴

Relative yield as affected by the interaction between broadcast and starter P rates.

Funding provided by the Fluid Fertilizer Foundation

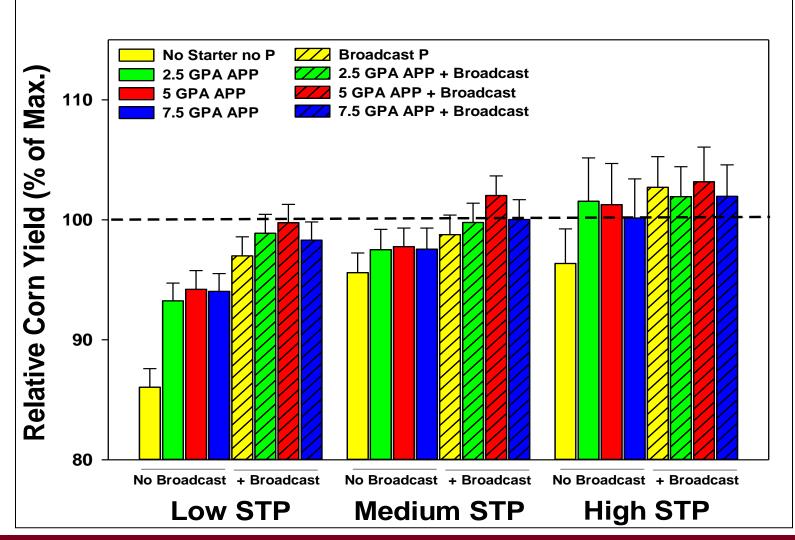
o Minnesota**Cor**i

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁴⁴

Summary for relative yield across sites.

- All main effects (Olsen P level, broadcast P and starter P) affected relative yields.
- A significant Olsen P level × broadcast P rate interaction showed: broadcast P increased yields at Very Low, Low, Medium and High Olsen P levels but not at Very High level (>16 ppm).
- A significant broadcast × starter P interaction showed starter P increased yields only when broadcast P was not applied.

Funding provided by the Fluid Fertilizer Foundation



University of Minnesota

ven to Discover™

Relative yield as affected by broadcast and starter P rates across soil test P classes.

Conclusions

- Should we vary starter rates based on soil attributes like soil test P or pH?
 – No.
- What is the benefit of starter fertilizer in addition to broadcast P fertilizer?
 - Small yield increase when STP low
 - Early growth and grain moisture.
- How do starter and broadcast P applications affect yield response across the landscape?
 - Response to broadcast P driven by STP, not so for starter. These data were not clear on the optimum rate of APP – likely about 5 gal/ac

Acknowledgements

- The authors are most grateful to:
 - the Fluid Fertilizer Foundation, Minnesota
 Corn Growers, Corn Research and Promotion
 Council for funding this project
 - FFF partnering labs for "in-kind" support
 - research crews at the Department of Soil,
 Water, and Climate and Southern Research
 and Outreach Center for their assistance

-farmer cooperators for their assistance and the use of land

Funding provided by the Fluid Fertilizer Foundation

UNIVERSITY OF MINNESOTA

Driven to Discover^{ss}

QUESTIONS

Jeffrey Vetsch Univ. of Minnesota Southern Research and Outreach Center jvetsch@umn.edu

http://sroc.cfans.umn.edu/People/Staff/JeffreyVetsch/index.htm

